IPC-23 Numeric Track

Chairs: Joan Espasa, Enrico Scala

Motivation and Objectives

- Competition over problems explicitly mentioning numeric state information
- Advancement on numeric planning facilitates planning into real-world applications
 - Modeling Resources
 - Modeling Spatial Configurations
 - Quantitative reasoning
 - More interesting objective functions
- Numeric reasoning is building block in more expressive formalisms (e.g., PDDL+, ANML, HDDL)
- This track stresses numeric reasoning putting other aspects aside

Some history

- No track on numeric planning **specifically** before
- Numeric planning was previously tested together with temporal actions
 - Domains mostly temporal with very little numeric reasoning
- We argue this hindered the complexity arising from the numeric structures, and the techniques targetting this setting

Numeric Planning Problems

- X: set of numeric state variables. F: set of Boolean state variables
- Formula defined recursively:
 - $\sum_{\{x \in X\}} w_x x + c \ge 0$ is a formula
 - Let $f \in F$, $f = \top$ or $f = \bot$ is a formula
 - If ϕ and ψ are formula so are $\phi \lor \psi$ and $\phi \land \psi$
- Numeric Planning Problems
 - A: set of labels denoting actions
 - I: set of assignments for Boolean and Numeric state variables
 - G: a formula
 - Pre: mapping from A to a formula
 - Eff: mapping from A to effects of the form $x := \xi$ with ξ linear expression over X
- Solution:
 - Sequence of actions applicable at init and goal reaching
 - Optimal solutions are those satisficing objective function at the final state
 - Ex. Minimize linear function over X

Simple and Linear Numeric Planning

- Simple Numeric Planning (SNP)
 - Restrict effects to be increase/decrease by a constant
- Linear Numeric Planning (LNP)
 - Restrict effects to be increase/decrease/assign of a linear function over numeric state variables
- LNP includes SNP
- SNP more studied and understood

Example of a Numeric Planning Problem

- A single agent in a discretised 3D Space
- Can move 6 directions:
 - up, down, left, right, forward, backwards
 - Increases and decreases x,y and z coordinates
- Objective is to visit a set of destinations and come back to destination
- Limited resource (battery)
- Can recharge at destination


```
(:action move-right
    :parameters ()
    :precondition (and
                      (>= (battery-level) 1)
                      (<= (x) (- (max_x) 1))
    :effect (and (increase (x) 1)
                (decrease (battery-level) 1)
)
(vaction decrease v
```

Domains

- Three sets of domains:
 - 1. Selection of domains from previous competitions (IPC-5)
 - TPP, ZenoTravel, Depots, Rover, Settlers
 - Domains scattered in various papers (Coles et al. 2011, Frances et al. 2016, Scala et al. 2016, Leofante et al. 2021)
 - Block-Grouping, Counters, **Fo-Counters**, Sailing, **Fo-Sailing**, Farmland, Hydropower, Markettrader, Mprime, Pathwaysmetric, Sugar
 - 3. New domains
 - Drone, Expedition, Extended-Plant-Watering, Delivery
- LNP (5 domains)
- SNP (15 domains)
- Total of 20 domains, each with 20 instances

Subtracks

Same setting as classical planning track. All have 8GB memory limits and run on **Cirrus**, a HPC and data science service from the University of Edinburgh

- Agile (5 min): 1 if within one second, 1 log(T)/log(300) if within 5 minute. 0 otherwise
- Satisficing (30 min): C*/C where C is the cost of the cheapest plan and C* is the cost of a reference plan
- **Optimal** (30 min): number of solved tasks

Participants

- Optimal
 - LNP Planners:
 - NLM-CutPlan
 - NLM-CutPlan Orbit
 - OMTPlan (Sequential)
 - OMTPlan (Parallel)
 - SNP Planners:
 - NLM-CutPlan OC
 - NLM-CutPlan OC Orbit
- Satisficing/Agile
 - LNP Planners:
 - NLM-CutPlan Sat
 - OMTPlan (Sequential)
 - OMTPlan (Parallel)
 - SNP Planners:
 - NLM-CutPlan OC Sat
 - NLM-CutPlan Sat2

- TEAM 1: Ryo Kuroiwa, Alexander Shleyfman, J. Christopher Beck
 - NLM Planners
- TEAM 2: Francesco Leofante
 - OMT Planners
- Team 3: Retracted

Agile :: Results

- SNP: The winner is
 - NLM-CutPlan SAT2
- LNP: The winner is
 - NLM-CutPlan SAT
- LNP+SNP: The winner is
 - NLM-CutPlan SAT

Satisficing :: Results

- SNP: The winner is
 - NLM-CutPlan SAT2
- LNP: The winner is
 - NLM-CutPlan SAT
- LNP+SNP: The winner is
 - NLM-CutPlan SAT

Optimal :: Results

- SNP: The winner is
 - NLM-CutPlan Orbit
- LNP: The winner is
 - NLM-CutPlan, NLM-CutPlan Orbit
- LNP+SNP: The winner is
 - NLM-CutPlan Orbit

Winner per Domain

(SNP + LNP) Satisficing

Satisficing	NLM-CutPlan Sat	OMTPlan (Parallel)
block-grouping	0	2
counters	11	20
delivery	7	2
drone	15	3
expedition	4	3
ext-plant-watering	18	0
farmland	9	0
fo_counters	4	3
fo-farmland	9	1
fo-sailing	14	1
hydropower	4	1
markettrader	0	0
mprime	10	11
pathwaysmetric	2	3
rover	3	16
sailing	8	0
settlers/settlersnumeric	2	0
sugar	5	19
tpp	2	4
zenotravel	9	11

Complementarity

- No Planner has total Dominance
- Data on VBS on the SNP+LNP Satisficing

Planner	#Instances Best	Contribution
NLM-CutPlan	17	7.56%
NLM-CutPlan Orbit	27	12%
NLM-CutPlan OC	4	1.78%
NLM-CutPlan OC Orbit	3	1.33%
NLM-CutPlan Sat	80	35.56%
NLM-CutPlan OC Sat	11	4.89%
NLM-CutPlan Sat2	45	20%
OMTPlan (Sequential)	8	3.56%
OMTPlan (Parallel)	30	13.33%

Winner per Domain

(SNP + LNP) Optimal

Optimal	NLM-CutPlan Orbit	OMTPlan (Parallel)
block-grouping	0	1
counters	4	4
delivery	5	1
drone	4	2
expedition	5	1
ext-plant-watering	0	0
farmland	13	0
fo_counters	3	3
fo-farmland	8	1
fo-sailing	6	1
hydropower	10	1
markettrader	0	0
mprime	14	6
pathwaysmetric	1	1
rover	4	6
sailing	7	0
settlers/settlersnume		
ric	1	0
sugar	8	1
tpp	2	0
zenotravel	7	0

Survival Plot on the SNP+LNP Satisficing

Conclusion and What's Next

• Not a lot of participants but this is a good start

• First public repository with numeric domains

• Thanks to all participants and congrats to the winner!